APPLICATION OF LINEAR PROGRAMING TO EXTREMAL PROBLEMS OF THE CONTROL THEORY

PMM Vol. 32, No. 1, 1968, pp. 147-153

V.I. BONDARENKO and Id.M. FILIMONOV
(Nizhnll Tagil)

(Recelved September 3, 1967)
The solution of problems on the optimal control of linear systems reducible to the L-problem of moments is described. This involves reducing the problem in question to one in linear programing.

The linear programing method makes it ponsible to reduce antomatic extremum search time. The general computational scheme is illustrated by solving several model problems.

1. Let controlled system be descrihed by the vector differential Eq.

$$
\begin{equation*}
d z / d t=A z+b u \tag{1.1}
\end{equation*}
$$

Here x denotes the n-dimensional vector of the phase coordinates of the controlled object and u a sealar function describing the controlling force.

Let us consider the following problems.
ProblemA. To find the function $u^{\circ}(t)$ (the optimal control) which satisfies restriction $\left|\mu^{\circ}(t)\right| \leqslant 1$ and brings system (1.1) from the given initial position z_{0} to the origin in the smallent possible time T^{0}.

Problem B. To find the optimal control $u^{(}(t)$ which in a given time T bringa system (1.1) from the atate z_{0} to the state $z(T)$ in such a way that

$$
\begin{equation*}
J(u)=\max \left\{\max _{\tau}|u(\tau)|, \theta \int_{0}^{T}|u(\tau)| d \tau\right\}=\min \quad(\theta=\text { const }) \tag{1.2}
\end{equation*}
$$

Problem C. To find the optimal control $u^{\circ}(\tau)$ which brings system (1.1) from the initial position x_{0} to the origin in the shortest time T^{0} in such a way that the reatriction

$$
\begin{equation*}
\int_{0}^{T}|u(\tau)| d \tau=1 \tag{1.3}
\end{equation*}
$$

imposed on the control function is fulfilled.
The solntions of the above problems, all considered from the common standpoint of the L-problem of moments, are obtnined in [1 and 2] and are as follows:

The optimal control for Problem A is

$$
\begin{equation*}
u^{\circ}(\tau)=\operatorname{sign}\left(\sum_{i=1}^{n} l_{i}^{\circ} h_{i}(\tau)\right) \tag{1.4}
\end{equation*}
$$

where the numbera $l_{i}{ }^{\circ}(i=1, \ldots, n)$ are the solution of the problem

$$
\begin{equation*}
\min _{l} \int_{0}^{r}\left|\sum_{i=1}^{n} l_{i} h_{i}(\tau)\right| d \tau=1, \quad \sum_{i=1}^{n} l_{i} c_{i}=1 \tag{1.5}
\end{equation*}
$$

The optimal control for Problem B is

$$
\begin{array}{lll}
u^{\circ}(\tau)=\frac{1}{\alpha} \operatorname{sign} \sum_{i=1}^{n} l_{i}^{\circ} h_{i}(\tau) & \text { for } & \tau \in \Delta^{\alpha} \tag{1.6}\\
u^{\circ}(\tau)=0 & \text { for } & \tau \equiv \Delta^{\circ}
\end{array}
$$

where the numbers $l_{1}{ }^{\circ}$ and the systems Δ° of the segments $\left[\tau_{k}, \tau_{k+1}\right]$ on $[0, T]$ are determined by the solution of the problem

$$
\begin{gather*}
\min _{l} \max _{\Delta} \int_{\Delta}\left|\sum_{i=1}^{n} l_{i} h_{i}(\tau)\right| d \tau=\alpha, \quad \sum_{i=1}^{n} l_{i} c_{i}=1 \\
\operatorname{mes}_{\Delta}=\min \left[\theta^{-1}, T\right] \tag{1.7}
\end{gather*}
$$

The optimal control for Problem C is

$$
\begin{equation*}
u^{0}(\tau)=\sum_{j=1}^{r} \mu_{j} \delta\left(\tau-\tau_{j}\right), \quad \sum_{j=1}^{r}\left|\mu_{j}\right|=1 \tag{1,8}
\end{equation*}
$$

where the symbol $\delta(\tau)$ is a pulse delta function and $\tau_{\text {, are the instants at which the func- }}$ tion $\left[l_{1}{ }^{\circ} h_{1}(\tau)+\ldots+l_{n}^{\circ} h_{n}(\tau)\right]$ reaches its maximum value on the segment $\left[0, T^{0}\right]$; the numbers $l{ }_{1}^{0}$ are the solution of the problem

$$
\begin{equation*}
\min _{l}\left(\max _{\tau}\left|\sum_{i=1}^{n} l_{i} h_{i}(\tau)\right| \quad \text { for } \quad 0 \leqslant \tau \leqslant T^{\circ}\right)=1, \quad \sum_{i=1}^{n} l_{i} c_{i}=1 \tag{1.9}
\end{equation*}
$$

In Formulas (1.4) to (1.9) we have

$$
h_{i}(\tau)=\sum_{j=1}^{n} f_{i j}(-\tau) b_{j}, \quad c_{i}=-Z_{i 0}
$$

where $f_{i j}(t)$ are the elements of the fundamental matrix $F(t)$ of homogeneous system (1.1).
In actual computation of optimal controls it is necessary to solve problems (1.5), (1.7), and (1.2). This can be done by numerical methods. The usual way of finding min l in problems (1.5) and (1.7) is by the method of steepest descents [3 and 4]. The latter method is applied in Problem A to the function

$$
\begin{gather*}
\rho_{A}\left(l_{1}, \ldots, l_{n-1}\right)=\int_{0}^{T}\left|g_{n}(\tau)+\sum_{i=1}^{n-1} l_{i g_{i}}(\tau)\right| d \tau \tag{1.10}\\
g_{i}(\tau)=h_{i}(\tau)+\frac{c_{i}}{c_{n}} h_{n}(\tau), \quad g_{n}(\tau)=\frac{1}{c_{n}} h_{n}(\tau), \quad(i=1, \ldots, n-1) \quad\left(c_{n} \neq 0\right)
\end{gather*}
$$

for a fixed T.
In Problem B the method of steepest descents is applied to the function

$$
\begin{equation*}
\rho_{B}\left(l_{1}, \ldots, l_{n-1}=\int_{\Delta(l)}\left|g_{n}(\tau)+\sum_{i=1}^{n-1} l_{i} g_{i}(\tau)\right| d \tau\right. \tag{1.11}
\end{equation*}
$$

under the assumption that the system $\Delta(l)$ of segments [τ_{k}, τ_{k+1}] which yields the max in (1.7) has already been chosen.

In automatic search for the extrema of functions (1.10) and (1.11) by the method of steepest descents or by some other local search (e.g. the gradient or the relaxation) method one is faced with difficulties occasioned by the atructural properties of these functions. There are very frequent cases where the functions ρ_{A} and ρ_{B} are so structured that changes in some of the variables produce relatively small changes in the values of the functions (this occurs, for example, with surfaces of the "trench" type with steep sides and a very mildly sloping floor). Search for the extrema of such functions involves rapid breakup of the operating interval; this slows down the search considerably or else stalls the computer in some
secondary "mild depression".
The use of the noalocal search method (also known as "trench" method) described by Gel'fand [5] expedites the search process. However, the totul search time is still large.

The time required to find the extrema of functions (1.10) and (1.11) can be decreased anbstentially by reducing the problems of minimizing the functions ρ_{A} and ρ_{B} to certain problems of linear programming.

We note that the proposed computational scheme is in a sense similar to the convex programing methods developed by Pshenichnyi [6 and 7].
2. Let as break down the segment $[0, T]$ into m equal parts at the points $\tau_{j}=j \Delta \tau(j=$ $=0, \ldots, m$). For a sufficiently large m we can write (1.10) in the form

$$
\begin{equation*}
\rho_{A} \approx \rho_{A}=\Delta r \sum_{j=1}^{m}\left|\sum_{i=1}^{n-1} l_{i} g_{i}\left(r_{j}\right)+g_{n}\left(r_{i}\right)\right| \tag{2.1}
\end{equation*}
$$

Let us consider the system of linear functions

$$
\begin{equation*}
y_{j}(l) \equiv \sum_{i=1}^{n-1} l_{i} g_{i}\left(\tau_{j}\right)+g_{n}\left(\tau_{j}\right) \quad(j=1, \ldots, m) \tag{2.2}
\end{equation*}
$$

The problem of minimizing $\rho_{A}{ }^{*}$ is then equivalent to the following problem of minimizing a conver plece wise-linear function:

$$
\begin{equation*}
v(l)=\sum_{j=1}^{m}\left|y_{j}\left(l_{1}, \ldots, l_{n-1}\right)\right| \tag{2.3}
\end{equation*}
$$

The problem of minimizing (2.3) can be reduced to a linear programing problem [7and 8].
To effect this reduction we introduce the additional variables $x_{1}, \ldots, x_{m 0}$ setting

$$
\left|y_{j}(l)\right| \leqslant x_{j} \quad \text { or } \quad x_{j}+y_{j}(l) \geqslant 0, \quad x_{j}-y_{j}(l) \geqslant 0
$$

The problem of minimizing (2.3) is now equivalent to the following linear programing prob* lem of minimizing the function

$$
\begin{equation*}
L=x_{1}+\ldots+x_{m} \tag{2.5}
\end{equation*}
$$

under reatrictions (2.4).
In fact, let $L^{\prime \prime}=\min L$ under restrictiong (2.4) and let it be attuined at the point ($l^{\prime \prime}, x^{\prime \prime}$); let $v^{\prime}=\min v$ and let it be attained at the point l^{\prime}. The Eqs. $x_{j}^{\prime \prime}=\left|y_{j}\left(l^{\prime \prime}\right)\right|$ are clearly fulfilled at the point $\left(l^{\prime \prime}, x^{\prime \prime}\right)$, aince $x_{j}^{\prime \prime} \geqslant\left|y_{j}\left(l^{\prime \prime}\right)\right|$ by virtue of (2.4), and since the corresponding x_{j} can be reduced in searching for min L in the absence of the equality sign for certain j. Hence,

$$
\begin{equation*}
L^{\prime \prime}=\sum_{j=1}^{m} x_{j^{\prime \prime}}=\sum_{j=1}^{m}\left|y_{j}\left(l^{\prime \prime}\right)\right| \geqslant v^{\prime} \tag{2.6}
\end{equation*}
$$

Now let $x_{j}^{\prime}=\left|y_{j}\left(l^{\prime}\right)\right|$. The point $\left(l^{\prime}, x^{\prime}\right)$ then satisfies restrictions (2.4), so that

$$
\begin{equation*}
L^{\prime} \leqslant \sum_{j=1}^{m} x_{j}^{\prime}=\sum_{j=1}^{m}\left|y_{j}\left(l^{\prime}\right)\right|=v^{\prime} \tag{2.7}
\end{equation*}
$$

From (2.6) mad (2.7) we conclude that $L^{\prime \prime \prime}=v^{\prime}$ and $l^{\prime \prime}$ from the solution $\left(l^{\prime \prime}, x^{\prime \prime}\right)$ of problem (2.4), (2.5) is also the solution of problem (2.3).

As a typical problem of linear programing, minimisation of fanction (2.5) can be effected by the simplez method.

We note that the linear programing problem for finding the minimum of the fanction ρ_{B} can be ocmatructed an described abovo.

Now let ne conaldar the problem of finding the extremum of the function

$$
\begin{equation*}
\rho_{c}\left(l_{1}, \ldots, l_{n-1}\right)=\min _{l}\left(\max _{\tau}\left|g_{n}(\tau)+\sum_{i=1}^{n-1} l_{i} g_{i}(\tau)\right|\right) \quad(0 \leqslant \tau \leqslant T) \tag{2.8}
\end{equation*}
$$

This is the problem to which we can reduce finding the minimum of the function in the left-hand side of Eq. (1.9) for a fixed T. Determination of this minimum is one of the steps in the solution of problem C.

We assume once again that the segment $[0, T]$ has been broken up into m equal parts at the pointa $T_{j}=j \Delta \tau(j=0, \ldots, m)$.

Now let us consider the vector function $\phi(l, T)$ with the components

$$
\begin{equation*}
\varphi_{j}\left(l, \tau_{j}\right)=\left|g_{n}\left(\tau_{j}\right)+\sum_{i=1}^{n-1} l_{i} g_{i}\left(\tau_{j}\right)\right| \quad(j=1, \ldots, m) \tag{2.9}
\end{equation*}
$$

and the set M of vectors S,

$$
s_{j}=\{\underbrace{0, \ldots, 0,1}_{j}, \ldots, 0\} \quad(j=1, \ldots, m)
$$

For a sufficiently large m problem (2.8) can be approximated by the problem

$$
\begin{equation*}
\left.\rho_{c}(l) \approx \rho_{c}^{*}=\min _{l}\left(\max _{g}(\varphi(l, \tau), s)\right]\right)(s \in M) \tag{2.10}
\end{equation*}
$$

Here the symbol (ϕ, s) denotes the scalar product of the vectors ϕ and s.
Let us consider the system of livear functions

$$
\begin{equation*}
y_{j}(l)=g_{n}\left(\tau_{j}\right)+\sum_{i=1}^{n-1} l_{i} g_{i}\left(\tau_{j}\right) \quad(j=1, \ldots, m) \tag{2.11}
\end{equation*}
$$

The problem of minimizing the piecewise-linear convex function

$$
\begin{equation*}
v(l)=\max _{3}(\varphi(l, \tau), s) \quad(s \in M) \tag{2.12}
\end{equation*}
$$

is the Chebyshev problem of approximating system (2.11). This can also be reduced to a linear programing problem [8].

To this end we introduce the new variable x_{0}, setting

$$
\begin{equation*}
\varphi_{j}\left(l, \tau_{j}\right) \leqslant x_{0} \quad(j=1, \ldots, m) \tag{2.13}
\end{equation*}
$$

The equivalent linear programing problem can be formulated as follows.
We are to minimize the function

$$
\begin{equation*}
L=x_{0} \tag{2.14}
\end{equation*}
$$

under the restrictions

$$
\begin{equation*}
x_{0}+g_{n}\left(\tau_{j}\right)+\sum_{i=1}^{n-1} l_{i} g_{i}\left(\tau_{j}\right) \geqslant 0, \quad x_{0}-g_{n}\left(\tau_{j}\right)-\sum_{i=1}^{n-1} l_{i} g_{i}\left(\tau_{j}\right) \geqslant 0 \tag{2.15}
\end{equation*}
$$

Let us show that the solution of problem (2.14), (2.15) is at the same time the solvtion of problem (2.10). Let $L^{\prime}=\min x_{0}$ under restrictions (2.15) and let it be attained at the point ($\left.I^{\prime} ; x\right)$.

It is then clear that

$$
L^{\prime}=x_{0}^{\prime}=\max _{\mathrm{g}}\left(\varphi\left(l^{\prime}, \tau\right), s\right) \geqslant \min _{l}\left[\max _{s}(\varphi(l, \tau), s]=\rho_{c}^{*} \quad(s \in M)\right.
$$

On the other hand, if $l^{\text {" }}$ is some Chebyshev point of system (2.11), we have $\phi_{1}\left(l^{\prime \prime}, \tau_{j}\right) \leqslant$ $\leqslant \rho_{c}^{*}(j=1, \ldots, m)$. This means that the point ($l^{\prime \prime}, x_{0}=\rho_{c}^{*}$) satisfies restrictions (2.15). But since L^{\prime} is the minimum value of x_{0} under restrictions (2.15), it cannot exceed $\rho_{e}{ }^{\phi}$, i.e. $L^{\prime} \leqslant \rho_{c}{ }^{*}$.

From these two inequalities we conclade that $\rho *=L^{\prime}$. Hence,

$$
\rho_{c^{*}}=\max _{s}\left(\varphi\left(l^{\prime}, \tau\right), s\right)=\min _{l}\left[\max _{s}(\varphi(l, \tau), s)\right] \quad(s \in M)
$$

i.e. the point $l^{\prime \prime}$ is the solution of problem (2,10) for $\rho_{c}^{*}=x_{0}^{\prime}$.

In conclusion we note that problem (2.14), (2.15) can be solved by the simplex method.
3. Fixample l. Let us solve the problem of shortening the time required to bring a gyrocompass to a given meridian [9]. The gryroscope motion is described by Eqs.

$$
\begin{equation*}
z_{1}^{*}=q_{12} z_{2}+q_{13} z_{3}+u(\tau), \quad z_{2}^{*}=q_{21} z_{1}, \quad z_{3}^{*}=q_{32} z_{2}+q_{33} z_{3} \tag{3.1}
\end{equation*}
$$

Here

$$
q_{12}=3.74 \cdot 10^{-2}, \quad \begin{gathered}
q_{13}=2.32 \cdot 10^{-2} i \\
q_{32}=-1.5 \cdot 10^{-3}, q_{33}=-1.5 \cdot 10^{-8}
\end{gathered} q_{21}=-4.11 \cdot 10^{-5},
$$

The problem of bringing system (3.1) to the origin in a fixed time T under the condition of minimality of the norm $\|u\|$ of the controlling function ($\|u\|=\max _{\tau}|u(\tau)|, 0 \leqslant \tau \leqslant T$) reduces to the problem [1] of finding

$$
\begin{equation*}
\min _{l}{ }_{\dot{0}}^{T}\left|\sum_{i=1}^{3} l_{i} h_{i}(\tau)\right| d \tau=\rho(\tau)=\frac{1}{\|u\|}\left(l_{1} c_{1}+!l_{2} c_{2}+l_{3} c_{3}=1\right\rangle \tag{3.2}
\end{equation*}
$$

Here

$$
\begin{gather*}
T=1800 \text { cer }, \quad c_{1}=2.87 \cdot 10^{-2}, \quad c_{2}=1,39 \cdot 10^{-2}, \quad c_{3}=-1.01 \cdot 10^{-2} \\
h_{1}(\tau)=a_{11} e^{x(1-\tau)}+e^{\varepsilon(T-\tau)}\left(b_{11} \cos \omega(T-\tau)-c_{11} \sin \omega(T-\tau)\right) \\
h_{2}(\tau)=a_{21} e^{x(T-\tau)}+e^{\varepsilon(T-\tau)}\left(b_{31} \cos \omega(T-\tau)-c_{21} \sin \omega(T-\tau)\right) \\
h_{3}(\tau)=a_{31} e^{x(T-\tau)}+e^{\varepsilon(T-\tau)}\left(b_{21} \cos \omega(T-\tau)-c_{31} \sin \omega(T-\tau)\right) \\
x=-0.8824 \cdot 10^{-s}, \quad \varepsilon=-0.3088 \cdot 10^{-3}, \omega=0.9481 \cdot 10^{-s} \\
a_{11}=-4.438 \cdot 10^{-1}, \quad a_{21}=-0.0207, \quad a_{31}=0.0503 \\
b_{11}=1.444, \quad b_{21}=0.0207, \quad b_{31}=-0.0503 \\
c_{11}=-0.0572, \quad c_{21}=0.0559, c_{31}=-0.0304 \tag{3.3}
\end{gather*}
$$

On eliminating l_{3} we can rewrite (3.2) as

Fig. 1

$$
\begin{gather*}
=\min _{l_{1}, l_{2}} \int_{0}^{\tau}\left|l_{1} \xi_{1}(\tau)+l_{2} g_{2}(\tau)+g_{8}(\tau)\right| d \tau \\
g_{1}(\tau)=h_{1}(\tau)-\frac{c_{1}}{c_{2}} h_{3}(\tau) \tag{3.4}\\
g_{2}(\tau)=h_{2}(\tau)-\frac{c_{2}}{c_{2}} h_{8}(\tau), \quad g_{3}(\tau)=\frac{1}{c_{8}} h_{3}(\tau)
\end{gather*}
$$

The functions g_{1}, g_{2}, and g_{3} are plotted in Fig. 1. The linear programing problem for solution (3.3) can be written as

$$
\begin{equation*}
L=x_{1}+\ldots+x_{m} \tag{3.5}
\end{equation*}
$$

under the restrictions

$$
\begin{gather*}
x_{j}+l_{1} g_{1}\left(\tau_{j}\right)+l_{2} g_{2}\left(\tau_{j}\right)+g_{3}\left(\tau_{j}\right) \geqslant 0 \\
x_{j}-l_{1} g_{1}\left(\tau_{j}\right)-l_{2} g_{2}\left(\tau_{j}\right)-g_{3}\left(\tau_{j}\right) \geqslant 0 \tag{3.6}\\
(j=1, \ldots, m)
\end{gather*}
$$

In order to make the solution of the above optimal problem more accurate we must choose our m sufficiently large. This imparts a large dimensionality to linear programing problem (3.5), (3.6). For example, for $m=50$ the initial matrix for solving the problem by the simplex method has the dimensionality (98×196). The dimensionality of the linear programing problem can be reduced without diminishing the accuracy of the initial problem by
computing integral (3.3) as a sum of trapezoid areas. In this case the segment $T=1800 \mathrm{sec}$ breaks down into 14 unequal parts. The average values of the ordinates

$$
g_{1}\left(\tau_{j}^{*}\right), g_{2}\left(\tau_{j}^{*}\right), g_{s}\left(\tau_{j}{ }^{*}\right)
$$

of functions (3.4) are given in the table.

j	$\Delta \tau_{j}$	$g_{1}\left(\tau_{j}{ }^{*}\right)$	$g_{2}\left(\tau_{j}{ }^{*}\right) \cdot 10^{-\boldsymbol{s}}$	$g_{\mathbf{3}}\left(\tau_{j}{ }^{*}\right)$
$\mathbf{1}$	187.5	-0.1868	0.385	-3.001
$\mathbf{2}$	300	0.0089	-0.102	-2.651
$\mathbf{3}$	300	0.2723	-0.6447	-2.077
4	150	0.4745	-0.975	-1.5765
$\mathbf{5}$	150	0.603	-1.11	-1.223
$\mathbf{6}$	75	0.695	-1.162	-0.962
7	75	0.751	-1.163	-0.795
$\mathbf{8}$	75	0.804	-1.138	-0.636
9	75	0.852	-1.1084	-0.489
$\mathbf{1 0}$	75	0.8935	-0.997	-0.354
11	75	0.9295	-0.876	-0.237
12	75	0.959	-0.718	-0.140
13	75	0.981	-0.52	-0.0667
14	112.5	0.9948	-0.205	-0.0181

Problem (3.5), (3.6) for the values of $g_{1}\left(\tau_{j}\right), g_{2}\left(\tau_{j}\right)$, and $g_{3}\left(\tau_{j}\right)$ given in the table was solved by the simplex method. This yielded

$$
l_{1}{ }^{0}=-1.143, \quad l_{2}{ }^{0}=-162.5
$$

The resulting value of ρ^{0} was $\rho^{0}=$ $=2228$.

Hence, the required optimal control in accordance with (1.4) turned out to be
$u^{0}(\tau)=0.448 \cdot 10^{-8} \operatorname{sign} \quad(3.7)$
$\left(-1.143 g_{1}(\tau)-162.5 g_{2}(\tau)+g_{3}(\tau)\right)$
The motion of system (3.1) under

Fig. 2
can solve this problem by finding

$$
\begin{equation*}
\rho^{\circ}=\min _{l_{2}}\left(\max _{\tau}\left|h_{1}(\tau)+l_{2} h_{2}(\tau)\right|, \quad 0 \leqslant \tau \leqslant 1.18\right) \tag{3.10}
\end{equation*}
$$

where

$$
h_{1}(\tau)=-\sin \tau, \quad h_{2}(\tau)=\cos \tau
$$

We can solve Problem (3.10) by reducing it to a linear programing problem. To this end we break down the segment $[0, T]$ into nine segments by means of the points $\tau_{j}=j 0.131(j=$ $=0, \ldots, 9)$. The equivalent linear programing problem can be formulated as follows. We are to find the minimum of the form

$$
\begin{equation*}
L=x_{0} \tag{3.11}
\end{equation*}
$$

under the restrictions

$$
\begin{equation*}
x_{0}+h_{1}\left(\tau_{j}\right)+l_{2} h_{2}\left(\tau_{j}\right) \geqslant 0, x_{0}-h_{1}\left(\tau_{j}\right)-l_{2} h_{2}\left(\tau_{j}\right) \geqslant 0(j=0, \ldots, 9) \tag{3.12}
\end{equation*}
$$

Problem (3.11), (3.12) was solved by the simplex method. The optimal value of the parameter l_{2} is $l_{2}{ }^{\circ}=0.668$. The function

$$
\begin{equation*}
g(\tau)=\mid-\sin \tau+0.668 \cos \tau) \mid \tag{3.13}
\end{equation*}
$$

is plotted in Fig. 3. From this plot we see that the function $g(\tau)$ attains its maximum values in the segment $[0,1.18]$, i.e. the values $\rho^{0}=0.668$ at the points $\tau_{1}=0, \tau_{2}=1.18$. Hence,

Fig. 3

Fig. 4
in accordance with (1.8) the optimal control is of the form

$$
\begin{equation*}
u^{0}(\tau)=\mu_{1} \delta(\tau-0)+\mu_{1} \delta(\tau-1.18) \tag{3.14}
\end{equation*}
$$

To determine the quantities μ_{1} and μ_{2} appearing in Fomula (3.14) we make use of the stipulation that the representing point must reach the origin at the instant $\mathcal{T}=1.18$. This condition implies the following Eqs.:

$$
\begin{aligned}
& 1=-\int_{0}^{1.18} \sin \tau\left[\mu_{1} \delta(\tau-0)+\mu_{2} \delta(\tau-1.18)\right] d \tau \\
& 0=\int_{0}^{1.18} \cos \tau\left[\mu_{1} \delta(\tau-0)+\mu_{2} \delta(\tau-1.18)\right] d \tau
\end{aligned}
$$

Carrying out the integrations, we obtain

$$
\begin{equation*}
\mu_{1}=0.415, \mu_{2}=-1.083 \tag{3.15}
\end{equation*}
$$

The optimal control with allowance for (3.15) is shown in Fig. 4.

BIBLIOGRAPHY

1. Krasovskii, N.N., On the theory of optimum control. PMM Vol. 23, No. 4, 1959.
2. Krasovskii, N.N., On the problem of damping of a linear system under minimum control intensity. PMM Vol. 29, No. 2, 1965.
3. Butkovakii, A.G., Theory of Optimal Control of Distributed Parameter Systems, p. 305, Izd. "Nauka", 1965.
4. Bondarenko, V.I., Krasovskii, N.N. and Filimonov, Iu.M., On the problem of bringing a linear syatem to its equilibrium position. PMM Vol. 29, No. 5, 1965.
5. Gel'fand, I.M. and Tsetlin, ML., The nonlocal search principle in automatic optimization systems. Dokl. Akad. Nauk SSSR Vol. 137, No. 2, 1961.
6. Pshenichnyi, B.N., The dual method in extremal problems. Kibernetika No. 3, 4K, 1965.
7. Birzak, B. and Pshenichnyi, B.N., Some problems of minimization of nonsmooth functions. Kibernetike No. 6, 1966.
8. Zathovitukii, S.I. and Avdeeva, L.I., Linear and Convex Programing p. 270, Izd. "Nauke", 1964.
9. Roitenberg, Ia.N., Some Problems of Motion Control (p.16). Fizmatgiz, 1963.
